Scientific Computing Group

NCCS USERS MEETING

Ricky A. Kendall March 27, 2007

Ten Commandments for HPC

I. Applications

VI. Applications

II. Applications

VII. Applications

III. Applications

VIII. Applications

IV. Applications

IX. Applications

V. Applications

X. Applications

High-Level Consultation

Project

Applications

Visualization

End-to-End

Whatever it Takes!

Scientific Computing Tasks and Deliverables

- Project partnerships in science, visualization, workflow, and data analytics
 - Level of integration is dependent upon the project
- High-level user assistance
 - Main staff function.
 Whatever it takes!
- Algorithmic development at scale
 - For scientific codes, visualization and workflow
- Application and library code optimization and scaling
 - How to use the LCF resources for science
- User voice within LCF planning exercises
 - Users are the focus.
- Requirements gathering, documentation
 - What's next for our users and our center
- Exploiting parallel I/O & other technologies in applications
 - Specific focus for targeted applications
- Acquiring & deploying viz and end-to-end systems
 - Infrastructure building and discovery.
- Benchmarking and evaluation exercises with Vendor interaction
 - Learning how to best use current and new LCF resources.

Partnership with Projects on LCF resources

Algorithmic and programming model development at scale

- Complex Tradeoffs for applications
 - Usually among storage, computation and communication
- Redesign new methods
 - Fixed grid to AMR grids
- Programming model changes
 - Message passing to one-sided model transformation

Application and Library Optimization and Scaling

Applications for the LCF systems

- Catamount issues for Apps
- Dual Core/Single core settings
- Compiler flags for optimal performance (Application/Library specific)
- Modifications for scaling

Libraries Built and kept up-to-date

- HDF5, PETSc, FFTW, etc.

Requirements Gathering and Documentation

- Participate in Applications Requirements Council (ARC)
- Determine requirements for applications on the machine
 - Algorithmic
 - Programming models
 - Architectural
 - Infrastructure
- Develop ties to applications areas not currently at scale on the machine
 - Work with developers to understand application properties
 - Memory footprint
 - Algorithmic scalability
 - Potential for future resources

The Staff

Visualization

- Sean Ahern (Task Lead)
- Ross Toedte
- Jamison Daniel
- George Ostrouchov
- David Banks

End to End Solutions

- Scott Klasky (Task Lead)
- Chen Jin
- Roselyne Barreto

The Staff

Computational Science

- Richard Barrett
- Mark Fahey
- Ricky Kendall
- Jeff Kuehn
- Bronson Messer
- Richard Mills
- Arnold Tharrington
- Trey White
- Vickie Lynch
- Sadaf Alam
- Markus Eisenbach
- Edo Apra
- Ramanan Sankaran

